CURIOSIDADES DA FÍSICA
José Maria Filardo Bassalo
www.bassalo.com.br

Difração, Dupla Refração e Polarização da Luz.

 

No livro intitulado Physico-Mathesis de Lumine, Coloribus et Iride, o físico italiano Francesco Maria Grimaldi (1618-1663), publicado postumamente, em 1665, descreveu algumas experiências nas quais mostrou que a propagação da luz pode se realizar de uma quarta maneira (além das três tradicionalmente conhecidas à sua época; reflexão, refração e difusão), denominada então por ele de difração. Sua convicção a respeito desse novo fenômeno luminoso foi tão grande que o apresentou como Proposição 1 desse seu livro e, a partir daí, passou a relatar algumas experiências que realizou, explicando-as por intermédio desse novo fenômeno físico que acabara de descobrir.

                   Na descrição de uma dessas experiências, Grimaldi demonstrou que se um feixe de luz branca passar através de dois estreitos orifícios, situados um atrás do outro, e em seguida atingir um anteparo branco, haverá neste uma região iluminada além da que deveria existir se a luz se propagasse em linha reta. É como se a luz se “encurvasse” ao passar pelos orifícios, afirmou Grimaldi. Observou ainda esse jesuíta italiano, nesse tipo de experiência, que nas bordas dessa região iluminada, havia uma ligeira coloração avermelhada e azulada. Fenômenos análogos aos descritos acima, Grimaldi também observou no iluminamento de objetos opacos ou cobertos de fendas finas. Registre-se que, por esse experimento de fendas finas realizado por Grimaldi, ele é considerado como o precursor da invenção da rede de difração. Registre-se, também, que as colorações avermelhada e azulada só foram explicadas pela teoria da interferência da luz, desenvolvida pelo físico e matemático inglês Thomas Young (1773-1829), em 1801 (vide verbete nesta série).

                   A presença de luz na sombra geométrica de um corpo iluminado, bem como de cores produzidas por uma lâmina (de faces paralelas) transparente e fina quando iluminada com luz branca, foi também descrita pelo físico inglês Robert Hooke (1635-1703) no livro intitulado Micrographia (“Micrografia”), publicado em 1665. Ainda nesse livro, Hooke descreveu a presença de anéis coloridos quando a parte esférica de uma lente plano-convexa, apoiada em uma placa de vidro, era iluminada com a luz solar (luz branca). Aliás, esses anéis coloridos, bem como as cores exibidas por películas finas quando iluminadas com luz branca, também foram observadas pelo físico inglês Robert Boyle (1627-1691), independentemente de Grimaldi e Hooke.

                   No livro de Hooke citado acima, ele explicava a difração com uma nova e revolucionária hipótese sobre a natureza da luz. Ele considerava que a luz consistia de rápidas vibrações que se propagavam instantaneamente, em alta velocidade e em qualquer distância, porém, a frente dessa “onda” não era necessariamente perpendicular à direção de propagação da mesma em um meio homogêneo. Neste, afirmava Hooke, que cada vibração geraria uma esfera que cresceria constantemente. E mais, em um meio transparente opticamente denso, a velocidade da luz aumentava. Destaque-se que, ainda na Micrographia, Hooke descreveu as experiências que realizou de insetos, plumas de aves, escamas de peixe, usando um microscópio composto  de várias lentes, porém de fraco poder de aumento. Com esse rude instrumento, Hooke fez uma importante descoberta para a ciência que seria fundada muito mais tarde, a Biologia. Assim, por intermédio de cortes delgados em um pedaço de cortiça, observou que a estrutura da mesma era constituída de unidades ocas, retangulares e regularmente alinhadas, às quais denominou células.

                   O estudo dos trabalhos de Grimaldi, Hooke e Boyle levou o físico e matemático inglês Sir Isaac Newton (1642-1727), em 1666, a estudar as cores exibidas por películas finas, fenômeno até hoje conhecido como anéis de Newton. Nessas suas experiências sobre as cores, Newton descobriu o fenômeno da dispersão da luz (vide verbete nesta série). É oportuno dizer que os trabalhos de Newton sobre Óptica estão reunidos em seu tratado Optics, publicado em 1704. Aliás, no final do Livro III desse tratado, Newton apresentou suas famosas Queries (“Questões”), num total de 16, redigidas de maneira problemática para “posteriores pesquisas”. Em 1706, foi publicada a edição latina do Optics (Optice: sive de Reflexionibus, Refractionibus, Inflexionibus et Coloribus Lucis), realizada pelo teólogo e filósofo inglês Samuel Clarke (1675-1729). Para essa edição, Newton preparou mais sete novas Queries, numeradas de 17 a 23. Em 1717, apareceu a segunda edição inglesa de Optics, na qual Newton incluiu mais oito novas “Questões”, numeradas de 17 a 24, sendo que as de número 17 a 23 da edição latina passaram a receber os números de 24 a 31. [Sir Isaac Newton, Great Books 32, (Encyclopaedia Britannica, Inc., Chicago, 1993)].

                   Na mesma época dos trabalhos de Grimaldi, Hooke, Boyle e Newton referidos acima, um outro fenômeno luminoso estranho foi descoberto. Com efeito, o médico dinamarquês Erasmus Bartholinus (1625-1698) recebeu um cristal transparente de carbonato de cálcio (CaCO3) (“calcita”) trazidos por alguns comerciantes da Islândia (razão pela qual esse cristal passou a ser conhecido como espato-da-Islândia) e, durante muitos anos de sua vida, ele realizou com o mesmo uma série de experiências. Nas primeiras experiências Bartholinus percebeu que esse cristal duplicava objetos quando estes eram vistos através dele, fenômeno esse denominado por ele de dupla refração. No prosseguimento de suas pesquisas, esse médico observou que se o cristal sofresse uma rotação, uma das imagens permanecia fixa, enquanto a outra se deslocava acompanhando o giro do cristal. Concluiu então que havia dois tipos de refração, uma responsável pela imagem fixa, à qual denominou de refração ordinária [que obedece à lei de Snell (1621)-Descartes (1637)], e uma outra responsável pela imagem imóvel, à que chamou de refração extraordinária. Embora sem explicar essas observações, ele as descreveu em uma pequena memória intitulada Experimentis Crystalli Islandici Disdiaclastici, quibus Mira et Insolita Refractio Detegitur, publicada em 1669.    

                   A hipótese ondulatória da luz proposta por Hooke, conforme afirmamos acima, foi reconsiderada pelo físico holandês Christiaan Huygens (1629-1695) que a melhorou e a ampliou em seu famoso Traité de la Lumière (“Tratado da Luz”), publicado em 1690. (Great Books 32, Encyclopaedia Britannica, Inc., Chicago, 1993). Formulando a hipótese de que a luz era uma onda longitudinal (tipo sonora) e idealizando um princípio (mais tarde conhecido como princípio de Huygens), segundo o qual cada ponto da frente de onda no éter cartesiano é tomado como o centro de um novo distúrbio que se propaga na forma de ondas esféricas; essas ondas secundárias combinavam-se de tal forma que o seu envelope determinava a nova frente de onda em um tempo posterior, e assim sucessivamente. Com auxílio desse princípio, Huygens demonstrou as leis da reflexão e da refração, chegando a um resultado polêmico: a velocidade da luz era menor do que na água, resultado contrário ao que chegara Newton com sua teoria corpuscular da luz. Essa polêmica só foi resolvida no quase na metade do Século 19 (vide verbete nesta série). De posse desse seu princípio, Huygens começou a realizar as experiências de Bartholinus com o cristal espato-da-Islândia, para entender o fenômeno da dupla refração. Para explicá-lo, Huygens formulou a hipótese de que nesse cristal há, em adição à onda esférica primária, uma segunda onda de forma esferoidal (elipse de revolução em torno de seu eixo maior). Assim, para ele, a onda esférica primária correspondente ao raio ordinário se propaga no cristal com velocidade constante em todas as direções, através da matéria etérea distribuída pelo corpo do cristal e responsável pela transparência do mesmo. Por outro lado, a onda esferoidal secundária correspondente ao raio extraordinário tem essa forma, concluiu Huygens, porque ela se propaga através da calcita com velocidade variável, já que se espelha indiferentemente não somente na matéria etérea distribuída no cristal, bem como pelas partículas que o compõem.

                   Por ocasião em que Huygens realizou essas experiências com o cristal de calcita, ele também fez uma importante descoberta: a polarização da luz. Vejamos como. Tomando dois desses cristais e colocando-os em sucessão, atravessou-os com um raio luminoso. Ao girar o segundo cristal em relação ao primeiro, observou que conforme a posição relativa dos dois cristais, os raios emergentes eram em número de dois ou de quatro, com suas intensidades variando durante a rotação. Embora achasse isso um fenômeno maravilhoso ele, contudo, não soube explicá-lo. Porém, em seu Traité, descreveu-o para dar oportunidade a que outros o investiguem. E foi Newton quem tentou uma primeira explicação.

                   Embora partidário da Teoria corpuscular da luz, Newton admitiu que a luz tivesse vários lados, com propriedades diferentes, apesar de considerar que essa transversabilidade seria uma objeção insuperável à aceitação da Teoria Ondulatória de Huygens, já que, na segunda metade do Século 17, os cientistas só conheciam as ondas longitudinais como as que ocorrem na propagação do som. Aliás, ideia de que a luz possuía lados foi usada por Newton (na segunda edição inglesa da Optics, em 1717) para poder explicar a difração observada por Grimaldi, conforme registramos acima. Desse modo, afirmava Newton que as regiões claras e escuras da figura de difração estariam ligadas aos “acessos” (fits, em inglês) que os corpúsculos de luz teriam ao passar ou não pelo orifício (ou fenda) e, uma vez passados, tais corpúsculos poderiam ir ou não para um lado ou para o outro do orifício (ou fenda) referido. Também para Newton, esses mesmos “acessos” seriam responsáveis para justificar a pequena parte que é refletida quando um feixe de luz atravessa a superfície separando dois meios refringentes (por exemplo: ar-água e ar-vidro). Por outro lado, para explicar a dupla refração registrada por Bartholinus, Newton supôs que os dois “lados” de um raio luminoso apresentavam propriedades de refração opostas: uma usual (responsável pelo raio ordinário) e a outra não usual (responsável pelo raio extraordinário).

                   O estudo da dupla refração levou a uma outra descoberta no sentido de consolidar a Teoria Ondulatória da Luz. Em janeiro de 1808, a Academia de Francesa de Ciências ofereceu um prêmio a quem apresentasse um estudo matemático da dupla refração e o confirmasse experimentalmente. Com esse estímulo, o físico francês Étienne-Louis Malus (1775-1812) começou a estudar, em sua própria casa, a dupla refração. Assim, com um cristal de calcita (“espato-da-Islândia”) observou a luz solar refletida nas janelas do Palácio de Luxemburgo que ficava nas proximidades de sua casa localizada à Rue des Enfers, em Paris. Por essa ocasião, ele fez uma observação curiosa, a de que as duas imagens obtidas por dupla refração na calcita variavam em intensidade, chegando, inclusive, uma delas a desaparecer quando esse cristal era girado em torno do raio solar refletido. Contudo, esse fenômeno curioso não ocorria quando ele examinava a luz do Sol diretamente através do cristal. É interessante registrar que o relato dessa descoberta foi feito pelo físico francês Jean-Baptiste Biot (1774-1862), que era colega de Malus na Escola Politécnica de Paris [William Francis Magie, A Source Books in Physics (McGraw-Hill Book Company, Inc., 1935). Registre-se que, nesse livro, se encontram excertos dos artigos sobre fenômenos luminosos tratados neste verbete].

                   Em consequência dessa observação, Malus começou a realizar uma série de experiências nas quais estudou a incidência de luz em superfícies transparentes. Observou, então, que quando um feixe de luz incide sobre a superfície da água, uma parte é refletida e a outra é refratada. E mais ainda, quando o ângulo de incidência for de 52045’, a parte refletida é polarizada, e tem todas as características do raio refletido pelas vidraças do Palácio de Luxemburgo. Segundo essas observações de Malus, se pode inferir que se um raio luminoso atravessar a calcita, cuja secção principal é paralela ao plano de reflexão, só emergirá o raio ordinário; se essa secção for perpendicular, só emergirá o raio extraordinário. No prosseguimento de suas experiências sobre a polarização da luz, Malus obteve, empiricamente, uma lei que permite calcular a intensidade relativa da luz emergente em função do quadrado do cosseno do ângulo () formado entre as direções de polarização dos cristais (os chamados eixos ópticos que selecionam os planos de polarização), lei essa hoje conhecida como Lei de Malus: I/Im = cos2 , sendo Im =I, quando  = 00. Ainda como resultado de suas experiências, Malus observou que para um determinado ângulo de incidência (), para o qual ocorre a reflexão polarizada, o raio refratado correspondente também é polarizado, porém em plano perpendicular ao plano da reflexão polarizada. Registre-se que, em dezembro de 1808, Malus comunicou o resultado de suas experiências sobre a polarização por reflexão (nome então cunhado por ele) à Academia Francesa de Ciências e publicado em 1809 (Memóires de la Société d´Arcueil 2, p. 143; Nouveau Bulletin des Sciences, par la Société Philomatique 1, p. 266). Em consequência desse trabalho, em 1810, ele recebeu o prêmio dessa Academia que havia oferecido, em janeiro de 1808, a quem resolvesse esse problema, conforme registramos anteriormente. [Sir Edmund Taylor Whittaker, A History of the Theories of Aether and Electricity: The Classical Theories (Thomas Nelson and Sons Ltd., 1951)].

                   Apesar de haver recebido essa honraria, em 1811 (Mémoire présenté à l´Institute par divers Savans 2, p. 214), em um trabalho intitulado Traité d´Optique (“Tratado de Óptica”), Malus apresentou o resultado teórico e experimental sobre sua descoberta. Partidário da teoria corpuscular newtoniana da luz, ele tentou dar uma explicação corpuscular para os dois fenômenos: dupla refração e polarização da luz. Assim, admitindo que um raio de luz é constituído de uma grande quantidade de moléculas polarizadas luminosas não-esféricas, porém arredondadas com três eixos () ortogonais entre si e desiguais, sendo o maior deles () orientado na direção do raio luminoso. Para a luz natural, na concepção de Malus, os eixos e  estariam orientados em todos os sentidos. Para explicar a polarização por reflexão, Malus afirmou o seguinte: - Quando a luz natural incide em um meio refringente com determinado ângulo (), então as forças repulsivas desse meio refletem uma parte desse raio, de tal forma que as moléculas que constituem esse raio refletido se agrupam de modo que seus eixos respectivos sejam paralelos entre si. Tal fenômeno, segundo Malus, é análogo ao que se produz quando um ímã orienta, na mesma direção, partículas magnetizadas colocadas em sua proximidade. Daí o nome que deu de moléculas polarizadas para as moléculas luminosas. Por outro lado, para explicar a dupla refração, Malus considerou que se o eixo  de uma partícula luminosa é perpendicular às forças repulsivas do meio, então re refrata como um raio ordinário; se, contudo, a perpendicularidade ocorrer para o eixo , então acontece o raio extraordinário.

                   É oportuno destacar que Malus, ainda em 1808 (Journal de l´École Polytechnique 7, p. 1), demonstrou um importante Teorema para o desenvolvimento posterior da Óptica Geométrica, principalmente no que se relaciona com a construção de imagens ópticas: - Um grupo de ondas preserva sua congruência normal, após qualquer número de reflexões e refrações. Registre-se que há congruência normal, se cada raio do grupo do grupo é cortado ortogonalmente por esferas centradas no ponto de intersecção desses raios. Note-se que esse Teorema (hoje conhecido como Teorema de Malus-Dupin) foi generalizado, em 1817 (Annales de Chimie et de Physique 5, p. 85), pela matemático francês Pierre Charles François Dupin (1784-1873) e, em 1825, pelo astrônomo belga Lambert Adolphe Jacques Quételet (1796-1874) (Correspondance Mathématique et Physique 1, p. 147) e pelo matemático francês Joseph Diez Gergonne (1771-1859). [Max Born and Emil Wolf, Principles of Optics (Pergamon Press, 1983)].

                   Ainda com relação aos fenômenos da dupla refração e da polarização por reflexão, é importante relatar as três descobertas realizadas, em 1815 (Philosophical Transactions of the Royal Society of London 105, p. 239), pelo físico irlandês Sir David Brewster (1781-1868). A primeira refere-se ao fato de que na polarização por reflexão, o raio refletido polarizado é perpendicular ao raio refratado, que também é polarizado (aliás, Malus já havia percebido isso, em 1808, conforme afirmamos acima). Esse resultado permite calcular o ângulo  de Malus, por intermédio da hoje conhecida Lei de Brewster: tg  = nr/ni , onde ni  e  nr  representam, respectivamente, os índices de refração dos meios incidente e refratante. Aliás, essa expressão é de fácil demonstração usando-se a Lei de Snell-Descartes (vide verbete nesta série): sen i/sen r = nr/ni , uma vez que, quando i =  ,  r = 900 - , portanto sen r = cos .  

                   A segunda descoberta de Brewster relaciona-se com a existência dos cristais biaxiais, que possuem dois eixos ópticos. (Notar se o eixo óptico de um cristal é determinado traçando-se por um dos dois vértices onde concorrem três ângulos obtusos, uma reta que faça ângulos iguais com as arestas desses vértices. Qualquer reta passando pelo cristal paralelamente a esta reta será, também, um eixo óptico.) Nesse tipo de cristal, não há dupla refração ao longo de seus eixos ópticos.

                   Em seus trabalhos com os cristais [uniaxiais, p.e.: a calcita; e biaxiais, p.e.; a mica, que é, em alguns casos, formada de silicatos de alumínio (SiA)], Brewster fez sua terceira descoberta ao observar que um material isotrópico transparente sujeito a tensões mecânicas, torna-se opticamente anisotrópico. Esse fenômeno ficou conhecido como tensão refringente ou efeito fotoelástico. Registre-se que, em 1816, Brewster inventou o caleidoscópio, que é um tubo dotado de um jogo de espelhos que produzem variadas combinações de imagens.  

                   Agora, vejamos como os fenômenos ópticos tratados neste verbete, foram explicados pela Teoria Ondulatória da Luz. Em 1815, o físico francês Augustin Jean Fresnel (1788-1827), alertado pelo seu grande amigo, o também físico francês Dominique François Jean Arago (1786-1853) sobre as experiências de Young sobre a interferência da luz, começo a trabalhar nesse assunto. Não dispunha de qualquer aparelhagem especial, no entanto, a sua genialidade o fez tomar apenas dois espelhos e dois prismas, os hoje denominados, respectivamente, espelho duplo de Fresnel e bi-prisma de Fresnel, e com eles obteve belas figuras de interferência. [E. Hecht and A. Zajac, Optics (Addison-Wesley Publishing Company, 1979)]. Em seguida, passou a estudar a difração de Grimaldi, usando obstáculos, extremidades finas e aberturas em anteparos. Os primeiros resultados desse estudo foram publicados em 1816 (Annales de Chimie et de Physique 1, p. 239).

                   Para explicar esses resultados, Fresnel combinou o princípio de Huygens (1790) para a construção de frentes de ondas e o princípio da interferência de Young (1801), combinação essa que passou a ser conhecida como princípio de Huygens-Fresnel: - A amplitude de uma onda luminosa que passa através de uma abertura ou de obstáculo é a soma (interferência) de todas as ondas secundárias oriundas da abertura ou do obstáculo. Para o cálculo dessas secundárias, Fresnel desenvolveu um método engenhoso segundo o qual a área do elemento difrator era dividida em uma série de zonas de igual área – as zonas de Fresnel. Esse método era relativamente simples quando aplicado a elementos difratores circulares e para pontos situados sobre o eixo de simetria do sistema fonte-objeto-anteparo. Porém, para outros pontos e outras formas geométricas daqueles elementos, seu método envolvia certos tipos de integrais de funções trigonométricas, conhecidas desde então como integrais de Fresnel:

 

     e     .

 

[É oportuno destacar que a dificuldade de tratamento dessas integrais só foi melhorada, muito mais tarde, em 1874 (Journal de Physique 3, p. 44), pelo físico francês Marie Alfred Cornu (1841-1902), quando relacionou essas integrais às propriedades geométricas de uma espiral, depois conhecida como espiral de Cornu. Esta nada mais é do que a representação, no plano complexo, da curva: B  = C  + i S, com = 0, 1, ... + ].

                   Quando Arago, no dia 15 de julho de 1816, apresentou à Academia Francesa de Ciências (AFC) a teoria matemática da difração de seu amigo Fresnel, acirrou-se a polêmica entre os físicos franceses sobre qual era a natureza da luz: partícula (Newton) ou onda (Huygens-Fresnel)? Os defensores da teoria corpuscular de Newton, dentre os quais se encontravam o próprio Arago, e mais Biot, Pierre Simon, Marquês de Laplace (1749-1827) e Siméon Denis Poisson (1781-1840), como tinham grande prestígio nessa Academia, fizeram com que esta escolhesse, em março de 1817, como tema de seu prêmio de 1818, a difração da luz. Pois bem, Fresnel concorreu a esse prêmio com o seu trabalho sobre a difração. No entanto, em uma das sessões em que Fresnel apresentou sua teoria, Poisson, que era um dos Membros da Comissão Julgadora [composta dos físicos citados acima e mais o químico francês Joseph Louis Gay-Lussac (1778-1850)], mostrou que, através de cálculo, se a teoria apresentada por Fresnel fosse verdadeira, deveria haver um “ponto brilhante” no centro da sombra projetada por um pequeno disco circular, o que, no seu entendimento, era um absurdo. Em vista dessa objeção, Arago, amigo de Fresnel, porém “newtoniano”, prometeu que na próxima reunião da Academia confirmaria ou não a objeção de Poisson. Montando sem demora um dispositivo experimental, Arago obteve o “ponto brilhante” e rendeu-se ao argumento ondulatório, mas Biot permaneceu newtoniano e brigou com Arago. Não havia mais dúvidas sobre a Teoria Ondulatória da Luz e, consequentemente, Fresnel foi o grande ganhador do prêmio de 1818 da AFC. É oportuno destacar que o “ponto brilhante” calculado por Poisson, já havia sido observado pelo astrônomo italiano Giacomo Fillipo Maraldi I (1665-1729), em 1723. Aliás, por essa mesma época, o astrônomo francês Joseph Nicholas Delisle (1688-1768), também fizera uma observação análoga.         

                   Além da difração da luz, Fresnel estudou também a dupla refração, a partir de 1816. Assim, com a ideia de que só havia interferência de ondas luminosas provenientes de uma mesma fonte, conforme Young havia mostrado em 1801, Fresnel e seu amigo Arago, tentaram, sem sucesso, interferir os raios ordinário e extraordinário oriundos da dupla refração. Em vista desse insucesso, Arago foi conversar com Young. Este, estimulado por essa conversa, e sendo partidário da teoria ondulatória, começou a trabalhar com a hipótese de que a luz era uma onda transversal (hipótese essa que já havia sido proposta por Hooke, conforme já vimos), e comunicou a Arago essa ideia em duas cartas escritas, respectivamente, em 12 de janeiro de 1817 e 29 de abril de 1818. Essa ideia youngiana da transversabilidade da luz foi usada por Fresnel para explicar o insucesso da experiência que fez, em 1816, junto com Arago. Para Fresnel, os raios ordinário e extraordinário não interferiam porque vibravam transversalmente e em direções perpendiculares, conforme disseram no artigo de 1819 (Annales de Chimie et de Physique 10, p. 288). Apesar de Arago haver concordado na co-autoria, ele não concordava com esse “atrevimento” (la hardiesse) da transversabilidade, conforme afirmaria logo depois. [Armand Gibert, Origens Históricas da Física Moderna (Fundação calouste Gulbenkian, 1982).]

                   A hipótese da transversabilidade da luz também foi usada por Fresnel para explicar a propagação da luz nos cristais uniaxiais e biaxiais. Ora, como os gases não resistem a esforços transversais, Fresnel então formulou um modelo sólido para o éter luminífero. Com essa ideia em mente, a partir de 1821, Fresnel começou a estudar as propriedades dinâmicas do éter luminífero e, para isso, estudou a propagação da luz em corpos cristalinos (uniaxiais e biaxiais). Desse modo, concluiu que só havia um meio luminífero nos cristais, e as velocidades (v) de propagação dos dois raios na dupla refração nada mais eram do que as raízes de uma equação quadrática que representava uma superfície de duas folhas, folhas essas que eram plano-polarizadas e perpendiculares entre si, definidas por:

 

,

 

e que ficaram conhecidas como superfícies-de-onda-de-Fresnel, onde (, m , n) indicam os cossenos diretores dos ângulos formados com os eixos cartesianos, da normal ao plano da onda cosseno, e  ,  e  denotam, respectivamente, as forças elásticas de restituição para deslocamentos unitários nos cristais. Assim, para Fresnel, se  =  =  e    = , teremos, respectivamente, as ondas esféricas e esferoidais propostas por Huygens, para explicar a dupla refração nos cristais uniaxiais, conforme vimos acima; se    , teremos as ondas (elipsoidais) nos cristais biaxiais. Essa pesquisa de Fresnel foi apresentada em trabalhos, publicados em 1821 (Annales de Chimie et de Physique 17, p. 180) e 1827 (Mémoires de l´Académie des Sciences de l´Institut de France 7, p. 45).

                   Ainda sobre a dupla refração é oportuno registrar que o físico escocês William Nicol (1768-1851), em 1829 (Edinburgh New Philosophical Journal 6, p. 83), usando dois cristais de espato-da-Islândia, colados diagonalmente com bálsamo-do-Canadá [uma substância transparente com índice de refração (n = 1,53), quase a metade entre no= 1,66 e ne= 1,49, índices de refração para os raios ordinário e extraordinário do espato], conseguiu eliminar o raio ordinário por reflexão total no bálsamo. Esse dispositivo, conhecido como prisma de Nicol, produz luz linearmente polarizada cuja direção de vibração é conhecida. Por isso, ele permitiu o desenvolvimento de técnicas polarimétricas, técnicas essas que foram fundamentais para o estudo posterior da estrutura molecular.  

                   De um modo geral, os materiais cristalinos podem ser usados para estudar a polarização da luz, por intermédio de um dispositivo chamado compensador, cuja função é compensar a diferença de fase entre os raios ordinário e extraordinário. Esse dispositivo é baseado em um teorema demonstrado pelo físico francês Jacques Babinet (1794-1872), em 1837 (Comptes Rendus Hebdomadaires des Séances de l´Académie des Sciences de Paris 4, p. 638), conhecido posteriormente como Princípio de Babinet: - Dois ‘screens’ difratores são ditos complementares quando as regiões transparentes sobre um deles correspondem exatamente às regiões opacas do outro e vice-versa. Baseado nesse princípio Babinet inventou um dispositivo – o compensador de Babinet – constituído de dois cristais de espato-da-Islândia, cortados diagonalmente e colados com seus eixos ópticos ortogonais. Com tal equipamento, Babinet conseguiu estudar a luz polarizada circularmente e elipticamente. Mais tarde, em 1845 (Comptes Rendus Hebdomadaires des Séances de l´Académie des Sciences de Paris 21, p. 426), o físico francês Henri Soleil modificou o compensador de Babinet introduzindo uma lâmina de faces paralelas ligadas a esse dispositivo e, de tal modo, que a orientação do eixo óptico da lâmina fosse a mesma da parte de baixo do dispositivo de Babinet. Registre-se que o compensador de Soleil tem a vantagem de produzir um desvio uniforme sobre toda a sua face e não apenas na face do feixe de luz incidente, como ocorre no compensador de Babinet.    

                   Na conclusão deste verbete, tratemos da difração de Fraunhofer. Depois de haver descoberto as raias espectrais no espectro solar, em 1814 (vide verbete nesta série), o físico alemão Joseph von Fraunhofer (1787-1826) redescobriu, em 1819, o princípio da grade (rede) de difração, uma vez que ela já havia sido descoberta pelo astrônomo norte-americano David Rittenhouse (1732-1796), em 1786 (Transactions of American Philosophy Society 2, p. 201), sem, contudo, ter despertado grande interesse. Esse princípio refere-se à difração da luz através de uma série de aberturas, em que a dimensão de cada uma delas (d) é muito menor do que a distância (r) em que se encontra o anteparo no qual se forma a figura de difração, isto é: d << r. Mais tarde, em 1821, Fraunhofer utilizou uma grade de difração para calcular o comprimento de onda () das raias espectrais mais fortes que observara desde 1814, por intermédio da relação, hoje, bastante conhecida: d sen  = n, onde n = 0, 1, 2, ... indica a posição dos centros da figura de difração e  é o ângulo formado entre cada posição e o eixo da rede. Desse modo, a difração para a qual a fonte luminosa está muito afastada do objeto difrator (o Sol, no caso das observações de Fraunhofer) ficou conhecida como difração de Fraunhofer. O resultado desse trabalho de Fraunhofer foi apresentado por ele à Academia de Ciências de Munique, em 1821-1822 (Denkschrift der Königlichen Akademie Wissenschaften zu München 8, p. 1).  Concluindo, é interessante destacar que, em 1835 (Transactions of the Cambridge Philosophical Society 5, p. 283), o astrônomo inglês Sir George Biddell Airy (1801-1892) deduziu matematicamente, e pela primeira vez, a difração de Fraunhofer através de aberturas circulares – o hoje famoso disco de Airy – e explicando, desse modo e formalmente, as suas regiões claras e escuras.  

                   Sobre a difração de Fraunhofer é oportuno acrescentar que, em 1870 (Annalen der Physik und Chemie 141, p. 479), o físico dinamarquês Christian Christiansen (1843-1917) descreveu uma experiência na qual descobriu a dispersão anômala da luz. Nessa experiência, ele analisou as raias espectrais de Fraunhofer (sobre essas raias ver verbete nesta série) em uma solução alcoólica com 18.8% de anilina. Dessa análise, concluiu que, naquele tipo de dispersão, luz de maior frequência () tem velocidade maior do que a de menor frequência, o que ocasiona, por exemplo, que a luz violeta tenha maior velocidade do que a de menor frequência. Desse modo, quando a luz branca (composição de todas as cores) atravessa um meio no qual há dispersão anômala, a luz violeta refrata menos do que a vermelha, conforme a Lei da Refração da Luz (vide verbete nesta série). Logo depois, em 1871 (Annalen der Physik und Chemie 142, p. 163), o físico alemão August Adolph Eduard Eberhardt Kundt (1839-1894) confirmou essa descoberta de Christiansen. (Magie, op. cit.).