CURIOSIDADES DA FÍSICA
José Maria Filardo Bassalo
www.bassalo.com.br

Revisitando o Sistema MKS/SI: Metro (m).

 

Como vimos em verbete desta série, a ideia dos sistemas de unidades usados em Física foi pela primeira apresentada pelo matemático alemão Johan Karl Friedrich Gauss (1777-1855), em 1832, ao demonstrar que algumas unidades físicas, como, por exemplo, o comprimento (milímetro mm), a massa (miligrama mg) e o tempo (segundo s), poderiam ser escolhidas como fundamentais ou absolutas, já que essas unidades físicas poderiam ser preservadas e facilmente reproduzidas. As duas primeiras por intermédio de padrões, e o tempo por intermédio de experiências com pêndulos ou, então, por intermédio de observações astronômicas. Ainda em 1832, Gauss foi o primeiro a formular um sistema de unidades magnéticas a partir das unidades mecânicas.

                   Até o final do Século 19, os sistemas de unidades físicas eram descritos ou por unidades absolutas, no sentido gaussiano descrito acima, ou por unidades práticas. Os sistemas absolutos usados em Mecânica (Centímetro, Grama, Segundo - CGS) poderiam ser usados para representar grandezas elétricas e magnéticas, desde que se escolhesse uma grandeza física característica delas (elétricas ou magnéticas), como unitária e sem dimensão. Assim, para as grandezas elétricas, foi escolhida a permissividade elétrica do vácuo0) como unitária, resultando o CGSES (CGS Eletrostático), e para as grandezas magnéticas, foi escolhida a permissividade magnética do vácuo0) também como unitária, o CGSEM (CGS Eletromagnético). Para passar de um sistema a outro, usava-se a relação c = (ε0 μ0)-1/2 obtida pelo físico e matemático escocês James Clerk Maxwell (1831-1879), em 1865, onde  c  representa a velocidade de propagação da luz no vácuo. O conjunto desses dois sistemas formava o Sistema Eletromagnético Absoluto (SEMA) de unidades. No entanto, esse mesmo sistema tornava-se impraticável quando tentava representar as unidades de resistência elétrica (R), potencial elétrico (V), corrente elétrica (I) etc., por exibir valores muitos pequenos. Em vista disso, foi criado um Sistema Prático de unidades que apresentava as mesmas dimensões do SEMA, porém diferia de potências de dez (10). Porém, como tal sistema era definido com fatores arbitrários e múltiplos das grandezas absolutas, ele não era absoluto. Esse problema foi contornado pelo engenheiro elétrico italiano Giovanni Giorgi (1871-1950), em 13 de outubro de 1901, em uma reunião da Associação Italiana de Engenharia Elétrica. Com efeito, seguindo uma ideia de Maxwell, ele propôs a essa Associação que o sistema prático eletromagnético se transformaria em um sistema absoluto, desde que fossem escolhidas como unidades fundamentais, o Metro, o Kilograma, o Segundo (MKS).

                   Agora, vejamos como evoluiu a definição de cada unidade do MKS. Para isso, usaremos, por exemplo, os seguintes textos: Chris D. Zafiratos, Physics (John Wiley and Sons, Inc., 1976); Arlie Bailey, Units, Standards and Constants. IN: Laurie M. Brown, Abraham Pais and Sir Brian Pippard (Editors), Twentieth Century Physics II (Institute of Physics Publishing and American Institute Physics Press, 1995); César Benjamin (Editor), Dicionário de Biografias Científicas I, II, III (Contraponto, 2007); Klaus von Klitzing, How long is the meter? [Conferência proferida na Universidade Federal do Pará (UFPA), em 03/10/2011]; e http://www.bipm.org/en/si/si.constants.html.

                   Em 1791, a Academia Francesa de Ciências, criada em 1666, organizou um Comitê, do qual participaram os matemáticos franceses, o Marquês Pierre Simon de Laplace (1749-1827) e o Conde Joseph Louis Lagrange (1736-1813) (de origem italiana), para criar o Sistema Métrico. Em decorrência disso, o metro (m) foi definido como a décima milionésima (10-7) parte da distância do polo norte ao equador ao longo do meridiano que passa por Dunkerque (norte da França), Paris e Barcelona. Contudo, desde 1736, já se sabia que os meridianos terrestres tinham valores diferentes, segundo as medições realizadas pelos franceses, o geógrafo e matemático Charles Marie de La Condamine (1701-1744), o físico Pierre Bouguer (1698-1758) e o matemático Louis Godin (1704-1760), entre Quito (norte) e Cuenca (sul), no Equador, e pelos franceses, os matemáticos Pierre Louis Moureau de Maupertuis (1698-1759) e Alexis Claude Clairaut (1713-1765), entre Tornea e Kittis, na Lapônia, no extremo norte da Suécia. Essas medidas, correspondente ao comprimento de um grau ao longo do meridiano medido foram, respectivamente, da ordem de 114,8 km e 113,5 km. É oportuno destacar que, em 1747, La Condamine propôs definir o metro como sendo o comprimento de um pêndulo que oscilasse uma vez por segundo, no equador terrestre [lembrar que T = π (ℓ/g)1/2, sendo T o período do pêndulo, ℓ o seu comprimento, e g a aceleração da gravidade], proposta essa que já havia sido apresentada, em 1673, pelo físico holandês Christiaan Huyghens (1629-1695), em seu célebre livro Horologium Oscillatorium sive de Motu Pendulorum (Relógio Oscilatório ou do Movimento dos Pêndulos). Em vista da diferença entre os comprimentos dos meridianos terrestres, em 1793, foi construído o mètre des archives, de platina (Pt), como padrão do m.

                   Em consequência da Revolução Industrial, a Inglaterra criou, em 1841, a Sociedade Britânica para o Desenvolvimento da Ciência, objetivando testar alguns instrumentos de medida de constantes físicas e desenvolver padrões para a mesma. Por sua vez, em 1875, o Governo Francês criou a Organização Internacional de Pesos e Medidas, composta de: 1) Escritório (Bureau) Internacional de Pesos e Medidas (BIPM), cujo primeiro Diretor foi o físico francês Charles Édouard Guillaume (1861-1938; PNF, 1920) e inventor do invar – liga de 36% de níquel (Ni), 0,2% de carbono (C) e 63,8% de ferro (Fe) – em 1897; 2) Conferências Gerais de Pesos e Medidas (CGPM), e 3) Comitês Internacionais de Pesos e Medidas (CIPM). Usando ligas de 90% de platina (Pt) e 10% de irídio (Ir), foram construídos protótipos de metro padrão (com cerca de 120 cm) e, por ocasião da 1a. CGPM, em 1889, um deles foi escolhido como padrão. Porém, sua definição internacional só aconteceu por ocasião da 7a. CGPM, em 1927: - A unidade de comprimento é o metro, definido como a distância, a 00 C, entre os eixos de duas linhas centrais marcadas em uma barra (em forma de X) de Pt-Ir mantida no BIPM e declarada Protótipo do metro pela 1a. CGPM (de 1889), sendo esta barra sujeita à pressão atmosférica padrão (760 mm de Hg) e apoiada sobre dois cilindros de pelo menos um centímetro de diâmetro, simetricamente colocados em um mesmo plano horizontal e distantes de 571 mm um do outro (Bailey, op. cit.). Esse padrão está hoje depositado no Museu Internacional de Pesos e Medidas (MIPM), localizado em Sèvres, próximo de Paris.

                   Por sua vez, a ideia de usar o comprimento de onda da luz como padrão para o metro foi apresentada pela primeira vez, em 1859, por Maxwell, ao sugerir que o comprimento de onda da luz amarela do sódio (Na) poderia ser usado como padrão. Em 1893, o físico norte-americano Albert Abraham Michelson (1852-1931; PNF, 1907) usou o interferômetro que havia inventado, em 1881 (vide verbete nesta série), e encontrou que o metro continha 1.553.164,13 unidades do comprimento de onda (λ) da luz vermelha do cádmio (Cd), medida no ar, na pressão de uma atmosfera (760 mm de Hg) e na temperatura de 150 C. Contudo, essa definição só foi adotada na 7a. CGPM, em 1927, para uso na espectroscopia. Com o desenvolvimento das técnicas para medir λ da radiação emitida pela transição eletrônica de átomos (vide verbete nesta série), a partir de 1950, o BIPM começou a examinar os perfis das linhas espectrais dos isótopos de 48Cd114, de mercúrio (80Hg198) ou de kryptônio (36Kr84 ou 36Kr86). Em 1960, por ocasião da 11a. CGPM, o CIPM definiu o metro como sendo 1.650.763,73 λKr, sendo λKr o comprimento de onda, no vácuo, da luz laranja-verde decorrente da transição entre dois níveis (2p10-5d5) do espectro da descarga de uma lâmpada de kryptônio-86 (36Kr86), com o catodo resfriado na temperatura do nitrogênio (N) líquido: - 2100 C. Por fim, o desenvolvimento do laser (ver verbete nesta série), construído também em 1960, permitiu medir com precisão a velocidade da luz no vácuo (c) e, desse modo, em 1983, a 17a. CGPM propôs a seguinte definição: - O metro é o comprimento da distância percorrida pela luz no vácuo durante o intervalo de 1/299.792.458 de um segundo (s). Registre-se que, ainda nessa Conferência, foi proposto, também para definir o metro, o comprimento de onda do laser de hélio-neon (HeNe): λHeNe = 632,99139822 nm, com uma incerteza de 2,5  10-11.